MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with bromine (Br)Bromocarbons (C, H, O, N, Br) → 1,2-dibromoethane

FORMULA:C2H4Br2
TRIVIAL NAME: ethylene dibromide
CAS RN:106-93-4
STRUCTURE
(FROM NIST):
InChIKey:PAAZPARNPHGIKF-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.4×10−2 4300 Burkholder et al. (2019) L
1.5×10−2 3900 Burkholder et al. (2015) L
1.4×10−2 4200 Brockbank (2013) L
1.7×10−2 5500 Hiatt (2013) M
1.9×10−2 Dohnal and Hovorka (1999) M 12)
1.3×10−2 Welke et al. (1998) M
1.9×10−2 Hovorka and Dohnal (1997) M 12)
1.8×10−2 5500 Kondoh and Nakajima (1997) M
1.1×10−2 3000 Khalfaoui and Newsham (1994a) M 33)
1.5×10−2 3900 Ashworth et al. (1988) M 279)
1.5×10−2 Mackay et al. (2006b) V
2.1×10−3 Mackay et al. (1993) V
1.4×10−2 Hine and Mookerjee (1975) V
1.2×10−2 Yaws (2003) X 238)
1.1×10−2 1900 Goldstein (1982) X 299)
1.5×10−2 HSDB (2015) C
1.2×10−2 Keshavarz et al. (2022) Q
3.3×10−3 Duchowicz et al. (2020) Q 185)
6.2×10−3 Wang et al. (2017) Q 81) 239)
4.6×10−2 Wang et al. (2017) Q 81) 240)
4.4×10−2 Wang et al. (2017) Q 81) 241)
2.8×10−2 Gharagheizi et al. (2012) Q
1.2×10−2 Gharagheizi et al. (2010) Q 247)
3.9×10−2 Hilal et al. (2008) Q
6.5×10−3 Modarresi et al. (2007) Q 68)
4800 Kühne et al. (2005) Q
1.6×10−2 Yaffe et al. (2003) Q 249) 250)
4.1×10−3 Katritzky et al. (1998) Q
7.5×10−3 Nirmalakhandan and Speece (1988) Q
1.2×10−3 Rumble (2021) ? 786) 787)
1.5×10−2 Duchowicz et al. (2020) ? 21) 186)
1.5×10−2 Mackay et al. (2006b) ?
4200 Kühne et al. (2005) ?
1.3×10−2 Yaws (1999) ? 21)
1.5×10−2 Mackay et al. (1993) ?
1.4×10−2 Yaws and Yang (1992) ? 21)
2.1×10−2 Abraham et al. (1990) ?
1.6×10−2 Mackay and Yeun (1983) ?
1.8×10−2 Chiou et al. (1980) ? 80)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Chiou, C. T., Freed, V. H., Peters, L. J., & Kohnert, R. L.: Evaporation of solutes from water, Environ. Int., 3, 231–236, doi:10.1016/0160-4120(80)90123-3 (1980).
  • Dohnal, V. & Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, doi:10.1021/IE980743H (1999).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Hovorka, Š. & Dohnal, V.: Determination of air–water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem. Eng. Data, 42, 924–933, doi:10.1021/JE970046G (1997).
  • HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Khalfaoui, B. & Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and brominated hydrocarbons, Fluid Phase Equilib., 98, 213–223, doi:10.1016/0378-3812(94)80120-7 (1994a).
  • Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Mackay, D. & Yeun, A. T. K.: Mass transfer coefficient correlations for volatilization of organic solutes from water, Environ. Sci. Technol., 17, 211–217, doi:10.1021/ES00110A006 (1983).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Rumble, J. R.: CRC Handbook of Chemistry and Physics, 102nd Edition, CRC Press, Boca Raton, FL, URL https://hbcp.chemnetbase.com (2021).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Welke, B., Ettlinger, K., & Riederer, M.: Sorption of volatile organic chemicals in plant surfaces, Environ. Sci. Technol., 32, 1099–1104, doi:10.1021/ES970763V (1998).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

12) Value at T = 293 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
33) Fitting the temperature dependence dlnH/d(1/T) produced a low correlation coefficient (r2 < 0.9). The data should be treated with caution.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
80) Value at T = 297 K.
81) Value at T = 288 K.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
238) Value given here as quoted by Gharagheizi et al. (2010).
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
247) Calculated using a combination of a group contribution method and neural networks.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
279) Data are taken from the report by Howe et al. (1987).
299) Value given here as quoted by Staudinger and Roberts (1996).
786) Value at T = 50 K.
787) Rumble (2021) refers to Hiatt (2013) as the source, but this value cannot be found there.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *