When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C3H7COOC2H5 |
TRIVIAL NAME:
|
ethyl butyrate
|
CAS RN: | 105-54-4 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | OBNCKNCVKJNDBV-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
2.5×10−2 |
6100 |
Brockbank (2013) |
L |
1)
|
2.9×10−2 |
6300 |
Plyasunov et al. (2004) |
L |
|
2.9×10−2 |
6400 |
Fenclová et al. (2014) |
M |
1)
|
2.4×10−2 |
|
Aprea et al. (2007) |
M |
|
2.6×10−2 |
|
Souchon et al. (2004) |
M |
|
2.1×10−2 |
|
van Ruth et al. (2002) |
M |
14)
|
2.1×10−2 |
|
van Ruth and Villeneuve (2002) |
M |
14)
363)
|
1.6×10−2 |
|
van Ruth et al. (2001) |
M |
14)
|
4.0×10−2 |
|
Landy et al. (1996) |
M |
|
2.4×10−2 |
|
Landy et al. (1995) |
M |
|
2.5×10−2 |
|
HSDB (2015) |
V |
|
2.4×10−2 |
|
Mackay et al. (2006c) |
V |
|
1.2×10−2 |
|
Philippe et al. (2003) |
V |
14)
|
2.4×10−2 |
|
Mackay et al. (1995) |
V |
|
2.8×10−2 |
|
Abraham (1984) |
V |
|
2.7×10−2 |
|
Hine and Mookerjee (1975) |
V |
|
2.8×10−2 |
|
Yaws (2003) |
X |
259)
|
2.8×10−2 |
|
Yaws (2003) |
X |
88)
238)
|
2.7×10−2 |
|
Nahon et al. (2000) |
C |
14)
|
4.5×10−2 |
|
Dupeux et al. (2022) |
Q |
260)
|
3.4 |
|
Abney (2021) |
Q |
401)
|
2.4×10−2 |
|
Savary et al. (2014) |
Q |
|
1.6×10−2 |
|
Gharagheizi et al. (2012) |
Q |
|
3.1×10−2 |
|
Raventos-Duran et al. (2010) |
Q |
244)
272)
|
2.0×10−2 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
2.5×10−2 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
3.5×10−2 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
2.0×10−2 |
|
Hilal et al. (2008) |
Q |
|
3.1×10−2 |
|
Modarresi et al. (2007) |
Q |
68)
|
2.7×10−2 |
|
Yaffe et al. (2003) |
Q |
249)
273)
|
2.8×10−2 |
|
Yao et al. (2002) |
Q |
230)
|
3.1×10−2 |
|
English and Carroll (2001) |
Q |
231)
232)
|
3.9×10−2 |
|
Katritzky et al. (1998) |
Q |
|
2.6×10−2 |
|
Suzuki et al. (1992) |
Q |
233)
|
2.8×10−2 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
2.4×10−2 |
|
Yaws (1999) |
? |
21)
88)
|
2.7×10−2 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abney, C. A.: Predicting Henry’s Law constants of volatile organic compounds present in bourbon using molecular simulations, Master’s thesis, University of Louisville, Kentucky, USA, doi:10.18297/etd/3440 (2021).
-
Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Aprea, E., Biasioli, F., Märk, T. D., & Gasperi, F.: PTR-MS study of esters in water and water/ethanol solutions: Fragmentation patterns and partition coefficients, Int. J. Mass Spectrom., 262, 114–121, doi:10.1016/J.IJMS.2006.10.016 (2007).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Fenclová, D., Blahut, A., Vrbka, P., Dohnal, V., & Böhme, A.: Temperature dependence of limiting activity coefficients, Henry’s law constants, and related infinite dilution properties of C4-C6 isomeric n-alkyl ethanoates/ethyl n-alkanoates in water. Measurement, critical compilation, correlation, and recommended data, Fluid Phase Equilib., 375, 347–359, doi:10.1016/J.FLUID.2014.05.023 (2014).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Landy, P., Druaux, C., & A.Voilley: Retention of aroma compounds by proteins in aqueous solution, Food Chem., 54, 387–392, doi:10.1016/0308-8146(95)00069-U (1995).
-
Landy, P., Courthaudon, J.-L., Dubois, C., & Voilley, A.: Effect of interface in model food emulsions on the volatility of aroma compounds, J. Agric. Food Chem., 44, 526–530, doi:10.1021/JF950279G (1996).
-
Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, ISBN 1566700353 (1995).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nahon, D. F., Harrison, M., & Roozen, J. P.: Modeling flavor release from aqueous sucrose solutions, using mass transfer and partition coefficients, J. Agric. Food Chem., 48, 1278–1284, doi:10.1021/JF990464K (2000).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Philippe, E., Seuvre, A.-M., Colas, B., Langendorff, V., Schippa, C., & Voilley, A.: Behavior of flavor compounds in model food systems: a thermodynamic study, J. Agric. Food Chem., 51, 1393–1398, doi:10.1021/JF020862E (2003).
-
Plyasunov, A. V., Plyasunova, N. V., & Shock, E. L.: Group contribution values for the thermodynamic functions of hydration of aliphatic esters at 298.15 K, 0.1 MPa, J. Chem. Eng. Data, 49, 1152–1167, doi:10.1021/JE049850A (2004).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Savary, G., Hucher, N., Petibon, O., & Grisel, M.: Study of interactions between aroma compounds and acacia gum using headspace measurements, Food Hydrocolloids, 37, 1–6, doi:10.1016/J.FOODHYD.2013.10.026 (2014).
-
Souchon, I., Athès, V., Pierre, F.-X., & Marin, M.: Liquid-liquid extraction and air stripping in membrane contactor: application to aroma compounds recovery, Desalination, 163, 39–46, doi:10.1016/S0011-9164(04)90174-9 (2004).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
van Ruth, S. M. & Villeneuve, E.: Influence of β-lactoglobulin, pH and presence of other aroma compounds on the air/liquid partition coefficients of 20 aroma compounds varying in functional group and chain length, Food Chem., 79, 157–164, doi:10.1016/S0308-8146(02)00124-3 (2002).
-
van Ruth, S. M., Grossmann, I., Geary, M., & Delahunty, C. M.: Interactions between artificial saliva and 20 aroma compounds in water and oil model systems, J. Agric. Food Chem., 49, 2409–2413, doi:10.1021/JF001510F (2001).
-
van Ruth, S. M., de Vries, G., Geary, M., & Giannouli, P.: Influence of composition and structure of oil-in-water emulsions on retention of aroma compounds, J. Sci. Food Agric., 82, 1028–1035, doi:10.1002/JSFA.1137 (2002).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
14) |
Value at T = 310 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
88) |
Value at T = 295 K. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
259) |
Value given here as quoted by Dupeux et al. (2022). |
260) |
Calculated using the COSMO-RS method. |
272) |
Value from the validation dataset. |
273) |
Value from the test set. |
363) |
Effective Henry's law constants at several pH values are provided by van Ruth and Villeneuve (2002). Here, only the value at pH = 3 is shown. |
401) |
Calculated for an aqueous solution containing 60 % ethanol by volume as the solvent. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|