MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsInorganic speciesNitrogen (N) → dinitrogen pentoxide

FORMULA:N2O5
TRIVIAL NAME: nitric anhydride
CAS RN:10102-03-1
STRUCTURE
(FROM NIST):
InChIKey:ZWWCURLKEXEFQT-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
3.0×10−2 Cruzeiro et al. (2022) T 93)
3.9×10−3 Galib and Limmer (2021) T 94)
4.9×10−3 Hirshberg et al. (2018) T 95)
8.7×10−4 3600 Fried et al. (1994) T 96)
3.9×10−2 4300 Robinson et al. (1997) Q 97)
4.9×10−2 Mentel et al. (1999) E 98)
Sander and Crutzen (1996) E 99)
Jacob (1986) E 99)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Cruzeiro, V. W. D., Galib, M., Limmer, D. T., & Götz, A. W.: Uptake of N2O5 by aqueous aerosol unveiled using chemically accurate many-body potentials, Nature Commun., 13, 1266, doi:10.1038/S41467-022-28697-8 (2022).
  • Fried, A., Henry, B. E., Calvert, J. G., & Mozurkewich, M.: The reaction probability of N2O5 with sulfuric acid aerosols at stratospheric temperatures and compositions, J. Geophys. Res., 99, 3517–3532, doi:10.1029/93JD01907 (1994).
  • Galib, M. & Limmer, D. T.: Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes, Science, 371, 921–925, doi:10.1126/SCIENCE.ABD7716 (2021).
  • Hirshberg, B., Rossich Molina, E., Götz, A. W., Hammerich, A. D., Nathanson, G. M., Bertram, T. H., Johnson, M. A., & Gerber, R. B.: N2O5 at water surfaces: binding forces, charge separation, energy accommodation and atmospheric implications, Phys. Chem. Chem. Phys., 20, 17 961–17 976, doi:10.1039/C8CP03022G (2018).
  • Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91, 9807–9826, doi:10.1029/JD091ID09P09807 (1986).
  • Mentel, T. F., Sohn, M., & Wahner, A.: Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols, Phys. Chem. Chem. Phys., 1, 5451–5457, doi:10.1039/A905338G (1999).
  • Robinson, G. N., Worsnop, D. R., Jayne, J. T., , Kolb, C. E., & Davidovits, P.: Heterogeneous uptake of ClONO2 and N2O5 by sulfuric acid solutions, J. Geophys. Res., 102, 3583–3601, doi:10.1029/96JD03457 (1997).
  • Sander, R. & Crutzen, P. J.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res., 101, 9121–9138, doi:10.1029/95JD03793 (1996).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

93) Calculated from the solvation free energy.
94) Calculated from the solvation free energy.
95) Calculated from the solvation free energy.
96) This value was extrapolated from data at T = 230 K and T = 273 K.
97) Robinson et al. (1997) applied an empirical correlation between Henry's law solubilities and boiling points from Schwartz and White (1981).
98) Estimate based on the relation between boiling points and Henry's law constants for other nitrogen oxides from Schwartz and White (1981).
99) Fast, irreversible hydrolysis is assumed, which is equivalent to an infinite effective Henry's law constant.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *