MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Aldehydes (RCHO) → benzaldehyde

FORMULA:C6H5CHO
CAS RN:100-52-7
STRUCTURE
(FROM NIST):
InChIKey:HUMNYLRZRPPJDN-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
4.0×10−1 5200 Brockbank (2013) L 1) 474)
3.8×10−1 5500 Staudinger and Roberts (2001) L
3.9×10−1 4800 Staudinger and Roberts (1996) L
3.2×10−1 6300 Allou et al. (2011) M
3.4×10−1 Souchon et al. (2004) M
3.5×10−1 7000 Allen et al. (1998) M
4.2×10−1 4600 Zhou and Mopper (1990) M 458)
3.7×10−1 5100 Betterton and Hoffmann (1988) M 462)
1.6×10−1 Mackay et al. (2006c) V
1.6×10−1 Mackay et al. (1995) V
3.6×10−1 Hine and Mookerjee (1975) V
3.5×10−1 5400 Bagno et al. (1991) T 475)
3.9×10−1 Yaws (2003) X 259)
3.6×10−1 Gaffney and Senum (1984) X 391)
3.7×10−1 Schüürmann (2000) C 21)
8.4×10−1 Dupeux et al. (2022) Q 260)
5.3×10−2 Keshavarz et al. (2022) Q
6.6×10−1 Duchowicz et al. (2020) Q 185)
3.0 Wang et al. (2017) Q 81) 239)
1.3 Wang et al. (2017) Q 81) 240)
1.6 Wang et al. (2017) Q 81) 241)
3.6×10−1 Li et al. (2014) Q 242)
3.9×10−1 Raventos-Duran et al. (2010) Q 244) 272)
4.9×10−1 Raventos-Duran et al. (2010) Q 245)
7.8×10−1 Raventos-Duran et al. (2010) Q 246)
7.7×10−1 Hilal et al. (2008) Q
1.2 Modarresi et al. (2007) Q 68)
2.6×10−2 Emel’yanenko et al. (2007) Q 417)
2.6×10−2 Hertel and Sommer (2006) Q 417)
5800 Kühne et al. (2005) Q
3.7×10−1 Yaffe et al. (2003) Q 249) 250)
5.4×10−1 English and Carroll (2001) Q 231) 275)
2.4×10−1 Katritzky et al. (1998) Q
7.2×10−1 Nirmalakhandan et al. (1997) Q
3.6×10−1 Suzuki et al. (1992) Q 233)
3.7×10−1 Duchowicz et al. (2020) ? 21) 186)
4.4×10−1 Mackay et al. (2006c) ? 21)
5400 Kühne et al. (2005) ?
4.0×10−1 Yaws (1999) ? 21)
3.6×10−1 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Allen, J. M., Balcavage, W. X., Ramachandran, B. R., & Shrout, A. L.: Determination of Henry’s Law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method, Environ. Toxicol. Chem., 17, 1216–1221, doi:10.1002/ETC.5620170704 (1998).
  • Allou, L., El Maimouni, L., & Le Calvé, S.: Henry’s law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition, Atmos. Environ., 45, 2991–2998, doi:10.1016/J.ATMOSENV.2010.05.044 (2011).
  • Bagno, A., Lucchini, V., & Scorrano, G.: Thermodynamics of protonation of ketones and esters and energies of hydration of their conjugate acids, J. Phys. Chem., 95, 345–352, doi:10.1021/J100154A063 (1991).
  • Betterton, E. A. & Hoffmann, M. R.: Henry’s law constants of some environmentally important aldehydes, Environ. Sci. Technol., 22, 1415–1418, doi:10.1021/ES00177A004 (1988).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • Emel’yanenko, V. N., Dabrowska, A., Verevkin, S. P., Hertel, M. O., Scheuren, H., & Sommer, K.: Vapor pressures, enthalpies of vaporization, and limiting activity coefficients in water at 100C of 2-furanaldehyde, benzaldehyde, phenylethanal, and 2-phenylethanol, J. Chem. Eng. Data, 52, 468–471, doi:10.1021/JE060406C (2007).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
  • Hertel, M. O. & Sommer, K.: Limiting separation factors and limiting activity coefficients for 2-furfural, γ-nonalactone, benzaldehyde, and linalool in water at 100C, J. Chem. Eng. Data, 51, 1283–1285, doi:10.1021/JE0600404 (2006).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, ISBN 1566700353 (1995).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Schüürmann, G.: Prediction of Henry’s law constant of benzene derivatives using quantum chemical continuum-solvation models, J. Comput. Chem., 21, 17–34, doi:10.1002/(SICI)1096-987X(20000115)21:1<17::AID-JCC3>3.0.CO;2-5 (2000).
  • Souchon, I., Athès, V., Pierre, F.-X., & Marin, M.: Liquid-liquid extraction and air stripping in membrane contactor: application to aroma compounds recovery, Desalination, 163, 39–46, doi:10.1016/S0011-9164(04)90174-9 (2004).
  • Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Zhou, X. & Mopper, K.: Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; Implications for air-sea exchange, Environ. Sci. Technol., 24, 1864–1869, doi:10.1021/ES00082A013 (1990).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
242) Temperature is not specified.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
272) Value from the validation dataset.
275) Value from the test dataset.
391) Value given here as quoted by Gaffney et al. (1987).
417) Value at T = 373 K.
458) Data from Table 1 by Zhou and Mopper (1990) were used to redo the regression analysis. The data for acetone in their Table 2 are incorrect.
462) Effective value that takes into account the hydration of the aldehyde:
Hs= ([RCHO]+[RCH(OH)2])/p(RCHO).
474) Values at 298 K in Tables C2 and C5 of Brockbank (2013) are inconsistent, with 6 % difference.
475) Calculated under the assumption that ∆G and ∆H are based on [mol L−1] and [atm] as the standard states.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *