When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C6H5C2H5 |
CAS RN: | 100-41-4 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | YNQLUTRBYVCPMQ-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
1.4×10−3 |
4500 |
Schwardt et al. (2021) |
L |
1)
353)
|
1.3×10−3 |
5000 |
Brockbank (2013) |
L |
1)
|
1.4×10−3 |
4800 |
Fogg and Sangster (2003) |
L |
|
1.3×10−3 |
5100 |
Staudinger and Roberts (2001) |
L |
|
1.3×10−3 |
4800 |
Plyasunov and Shock (2000) |
L |
|
1.2×10−3 |
5100 |
Staudinger and Roberts (1996) |
L |
|
1.3×10−3 |
|
Mackay and Shiu (1981) |
L |
|
1.3×10−3 |
4400 |
Schwardt et al. (2021) |
M |
354)
|
2.0×10−3 |
4100 |
Hiatt (2013) |
M |
|
1.9×10−3 |
4200 |
Zhang et al. (2013) |
M |
326)
|
1.4×10−3 |
|
Zhang et al. (2013) |
M |
327)
|
1.3×10−3 |
5100 |
Sieg et al. (2009) |
M |
328)
|
1.4×10−3 |
|
Li et al. (2008) |
M |
|
1.2×10−3 |
2700 |
Falabella and Teja (2008) |
M |
11)
340)
|
1.1×10−3 |
|
Lodge and Danso (2007) |
M |
|
|
|
Cheng et al. (2003) |
M |
330)
|
1.6×10−3 |
|
Miller and Stuart (2000) |
M |
73)
|
1.1×10−3 |
|
Ryu and Park (1999) |
M |
355)
|
1.3×10−3 |
|
Allen et al. (1998) |
M |
|
1.4×10−3 |
2800 |
Kondoh and Nakajima (1997) |
M |
|
1.1×10−3 |
|
Turner et al. (1996) |
M |
|
1.5×10−3 |
4900 |
Dewulf et al. (1995) |
M |
|
1.3×10−3 |
5000 |
Robbins et al. (1993) |
M |
356)
|
1.3×10−3 |
5300 |
Perlinger et al. (1993) |
M |
|
1.3×10−3 |
|
Li and Carr (1993) |
M |
|
1.3×10−3 |
|
Li et al. (1993) |
M |
|
2.5×10−3 |
|
Zhang and Pawliszyn (1993) |
M |
|
1.1×10−3 |
5500 |
Bissonette et al. (1990) |
M |
|
1.2×10−3 |
5000 |
Ashworth et al. (1988) |
M |
279)
|
1.3×10−3 |
4400 |
Heidman et al. (1985) |
M |
1)
|
1.3×10−3 |
4600 |
Sanemasa et al. (1982) |
M |
|
1.4×10−3 |
4500 |
Sanemasa et al. (1981) |
M |
|
1.4×10−3 |
5500 |
Ervin et al. (1980) |
M |
|
1.5×10−3 |
|
Warner et al. (1980) |
M |
|
1.2×10−3 |
|
Mackay et al. (1979) |
M |
|
6.6×10−4 |
|
Sato and Nakajima (1979a) |
M |
14)
|
1.3×10−3 |
5600 |
Brown and Wasik (1974) |
M |
|
1.6×10−3 |
6400 |
Hartkopf and Karger (1973) |
M |
|
1.6×10−4 |
|
Abraham and Acree (2007) |
V |
|
1.1×10−3 |
|
Mackay et al. (2006a) |
V |
|
1.2×10−3 |
|
Shiu and Ma (2000) |
V |
|
1.2×10−3 |
|
Lide and Frederikse (1995) |
V |
|
1.1×10−3 |
|
Mackay et al. (1992a) |
V |
|
1.2×10−3 |
|
Hwang et al. (1992) |
V |
|
1.0×10−3 |
|
Eastcott et al. (1988) |
V |
|
1.2×10−3 |
4800 |
Abraham (1984) |
V |
|
1.6×10−3 |
4900 |
Ben-Naim and Wilf (1980) |
V |
1)
|
1.5×10−3 |
|
Warner et al. (1980) |
V |
|
1.1×10−3 |
|
Hine and Mookerjee (1975) |
V |
|
1.5×10−3 |
4800 |
Wauchope and Haque (1972) |
V |
|
1.3×10−3 |
|
McAuliffe (1966) |
V |
24)
|
1.5×10−3 |
4900 |
Andon et al. (1954) |
V |
338)
|
1.5×10−3 |
|
Bohon and Claussen (1951) |
V |
|
1.4×10−3 |
4900 |
Owens et al. (1986) |
T |
|
1.1×10−3 |
|
Mackay et al. (1979) |
T |
|
|
4800 |
Gill et al. (1976) |
T |
|
1.2×10−3 |
|
Yaws (2003) |
X |
238)
|
1.6×10−3 |
1700 |
Goldstein (1982) |
X |
299)
|
1.3×10−3 |
|
Sieg et al. (2008) |
C |
|
1.6×10−3 |
|
Ryan et al. (1988) |
C |
|
1.5×10−3 |
|
Shen (1982) |
C |
|
9.7×10−4 |
|
Hayer et al. (2022) |
Q |
20)
|
1.3×10−3 |
|
Keshavarz et al. (2022) |
Q |
|
3.1×10−3 |
|
Duchowicz et al. (2020) |
Q |
|
3.1×10−3 |
|
Wang et al. (2017) |
Q |
81)
239)
|
9.3×10−4 |
|
Wang et al. (2017) |
Q |
81)
240)
|
2.8×10−3 |
|
Wang et al. (2017) |
Q |
81)
241)
|
1.4×10−3 |
|
Gharagheizi et al. (2012) |
Q |
|
9.9×10−4 |
|
Raventos-Duran et al. (2010) |
Q |
243)
244)
|
9.9×10−4 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
1.2×10−3 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
1.1×10−3 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
1.4×10−3 |
|
Hilal et al. (2008) |
Q |
|
9.6×10−4 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
4700 |
Kühne et al. (2005) |
Q |
|
1.2×10−3 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
5.8×10−4 |
|
Yao et al. (2002) |
Q |
230)
|
1.4×10−3 |
|
English and Carroll (2001) |
Q |
231)
261)
|
4.1×10−4 |
|
Katritzky et al. (1998) |
Q |
|
1.6×10−3 |
|
Russell et al. (1992) |
Q |
280)
|
1.1×10−3 |
|
Suzuki et al. (1992) |
Q |
233)
|
1.3×10−3 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
1.3×10−3 |
|
Arbuckle (1983) |
Q |
|
1.3×10−3 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
5000 |
Kühne et al. (2005) |
? |
|
1.2×10−3 |
|
Yaws (1999) |
? |
21)
|
6.9×10−4 |
|
Abraham and Weathersby (1994) |
? |
21)
|
1.1×10−3 |
|
Hoff et al. (1993) |
? |
21)
|
1.2×10−3 |
|
Yaws and Yang (1992) |
? |
21)
|
1.2×10−3 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
-
Abraham, M. H. & Acree, Jr., W. E.: Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration, Fluid Phase Equilib., 262, 97–110, doi:10.1016/J.FLUID.2007.08.011 (2007).
-
Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Allen, J. M., Balcavage, W. X., Ramachandran, B. R., & Shrout, A. L.: Determination of Henry’s Law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method, Environ. Toxicol. Chem., 17, 1216–1221, doi:10.1002/ETC.5620170704 (1998).
-
Andon, R. J. L., Cox, J. D., & Herington, E. F. G.: Phase relationships in the pyridine series. Part V. The thermodynamic properties of dilute solutions of pyridine bases in water at 25∘ and 40∘, J. Chem. Soc., pp. 3188–3196, doi:10.1039/JR9540003188 (1954).
-
Arbuckle, W. B.: Estimating activity coefficients for use in calculating environmental parameters, Environ. Sci. Technol., 17, 537–542, doi:10.1021/ES00115A008 (1983).
-
Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
-
Ben-Naim, A. & Wilf, J.: Solubilities and hydrophobic interactions in aqueous solutions of monoalkylbenzene molecules, J. Phys. Chem., 84, 583–586, doi:10.1021/J100443A004 (1980).
-
Bissonette, E. M., Westrick, J. J., & Morand, J. M.: Determination of Henry’s coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, June 17–21, pp. 1913–1922 (1990).
-
Bohon, R. J. & Claussen, W. F.: The solubility of aromatic hydrocarbons in water, J. Am. Chem. Soc., 73, 1571–1578, doi:10.1021/JA01148A047 (1951).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Brown, R. L. & Wasik, S. P.: A method of measuring the solubilities of hydrocarbons in aqueous solutions, J. Res. Natl. Bureau Standards A: Phys. Chem., 78A, 453–460, doi:10.6028/JRES.078A.028 (1974).
-
Cheng, W.-H., Chu, F.-S., & Liou, J.-J.: Air–water interface equilibrium partitioning coefficients of aromatic hydrocarbons, Atmos. Environ., 37, 4807–4815, doi:10.1016/J.ATMOSENV.2003.08.012 (2003).
-
Dewulf, J., Drijvers, D., & van Langenhove, H.: Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range, Atmos. Environ., 29, 323–331, doi:10.1016/1352-2310(94)00256-K (1995).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Eastcott, L., Shiu, W. Y., & Mackay, D.: Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations, Oil Chem. Pollut., 4, 191–216, doi:10.1016/S0269-8579(88)80020-0 (1988).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Ervin, A. L., Mangone, M. A., & Singley, J. E.: Trace organics removal by air stripping, in: Proceedings of the Annual Conference of the American Water Works Association, pp. 507–530 (1980).
-
Falabella, J. B. & Teja, A. S.: Air–water partitioning of gasoline components in the presence of sodium chloride, Energy Fuels, 22, 398–401, doi:10.1021/EF700513K (2008).
-
Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Gill, S. J., Nichols, N. F., & Wadsö, I.: Calorimetric determination of enthalpies of solution of slightly soluble liquids II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities, J. Chem. Thermodyn., 8, 445–452, doi:10.1016/0021-9614(76)90065-3 (1976).
-
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
-
Hartkopf, A. & Karger, B. L.: Study of the interfacial properties of water by gas chromatography, Acc. Chem. Res., 6, 209–216, doi:10.1021/AR50066A006 (1973).
-
Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
-
Heidman, J. L., Tsonopoulos, C., Brady, C. J., & Wilson, G. M.: High-temperature mutual solubilities of hydrocarbons and water. Part II: Ethylbenzene, ethylcyclohexane, and n-octane, AIChE J., 31, 376–384, doi:10.1002/AIC.690310304 (1985).
-
Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Hoff, J. T., Mackay, D., Gillham, R., & Shiu, W. Y.: Partitioning of organic chemicals at the air–water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, doi:10.1021/ES00047A026 (1993).
-
Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Li, J. & Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443–1450, doi:10.1021/AC00058A023 (1993).
-
Lide, D. R. & Frederikse, H. P. R.: CRC Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., Boca Raton, FL, ISBN 0849304768 (1995).
-
Li, J., Dallas, A. J., Eikens, D. I., Carr, P. W., Bergmann, D. L., Hait, M. J., & Eckert, C. A.: Measurement of large infinite dilution activity coefficients of nonelectrolytes in water by inert gas stripping and gas chromatography, Anal. Chem., 65, 3212–3218, doi:10.1021/AC00070A008 (1993).
-
Li, J.-Q., Shen, C.-Y., Xu, G.-H., Wang, H.-M., Jiang, H.-H., Han, H.-Y., Chu, Y.-N., & Zheng, P.-C.: Dynamic measurements of Henry’s law constant of aromatic compounds using proton transfer reaction mass spectrometry, Acta Phys. Chim. Sin., 24, 705–708 (2008).
-
Lodge, K. B. & Danso, D.: The measurement of fugacity and the Henry’s law constant for volatile organic compounds containing chromophores, Fluid Phase Equilib., 253, 74–79, doi:10.1016/J.FLUID.2007.01.010 (2007).
-
Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
-
Mackay, D., Shiu, W. Y., & Sutherland, R. P.: Determination of air–water Henry’s law constants for hydrophobic pollutants, Environ. Sci. Technol., 13, 333–337, doi:10.1021/ES60151A012 (1979).
-
Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs, Lewis Publishers, Boca Raton, ISBN 0873715136 (1992a).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006a).
-
McAuliffe, C.: Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons, J. Phys. Chem., 70, 1267–1275, doi:10.1021/J100876A049 (1966).
-
Miller, M. E. & Stuart, J. D.: Measurement of aqueous Henry’s law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 72, 622–625, doi:10.1021/AC990757C (2000).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Owens, J. W., Wasik, S. P., & DeVoe, H.: Aqueous solubilities and enthalpies of solution of n-alkylbenzenes, J. Chem. Eng. Data, 31, 47–51, doi:10.1021/JE00043A016 (1986).
-
Perlinger, J. A., Eisenreich, S. J., & Capel, P. D.: Application of headspace analysis to the study of sorption of hydrophobic organic chemicals to α−Al2O3, Environ. Sci. Technol., 27, 928–937, doi:10.1021/ES00042A016 (1993).
-
Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Robbins, G. A., Wang, S., & Stuart, J. D.: Using the headspace method to determine Henry’s law constants, Anal. Chem., 65, 3113–3118, doi:10.1021/AC00069A026 (1993).
-
Russell, C. J., Dixon, S. L., & Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry’s law constant, Anal. Chem., 64, 1350–1355, doi:10.1021/AC00037A009 (1992).
-
Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
-
Ryu, S.-A. & Park, S.-J.: A rapid determination method of the air/water partition coefficient and its application, Fluid Phase Equilib., 161, 295–304, doi:10.1016/S0378-3812(99)00193-4 (1999).
-
Sanemasa, I., Akari, M., Deguchi, T., & Nagai, H.: Solubilities of benzene and the alkylbenzenes in water – method for obtaining aqueous solutions saturated with vapours in equilibrium with organic liquids, Chem. Lett., 10, 225–228, doi:10.1246/CL.1981.225 (1981).
-
Sanemasa, I., Araki, M., Deguchi, T., & Nagai, H.: Solubility measurements of benzene and the alkylbenzenes in water by making use of solute vapor, Bull. Chem. Soc. Jpn., 55, 1054–1062, doi:10.1246/BCSJ.55.1054 (1982).
-
Sato, A. & Nakajima, T.: Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil, Br. J. Ind. Med., 36, 231–234, doi:10.1136/OEM.36.3.231 (1979a).
-
Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95∘C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
-
Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
-
Shiu, W. Y. & Ma, K.-C.: Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. I. mononuclear and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130, doi:10.1063/1.556055 (2000).
-
Sieg, K., Fries, E., & Püttmann, W.: Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry, J. Chromatogr. A, 1178, 178–186, doi:10.1016/J.CHROMA.2007.11.025 (2008).
-
Sieg, K., Starokozheva, E., Schmidt, M. U., & Püttmann, W.: Inverse temperature dependence of Henry’s law coefficients for volatile organic compounds in supercooled water, Chemosphere, 77, 8–14, doi:10.1016/J.CHEMOSPHERE.2009.06.028 (2009).
-
Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
-
Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
Turner, L. H., Chiew, Y. C., Ahlert, R. C., & Kosson, D. S.: Measuring vapor-liquid equilibrium for aqueous-organic systems: Review and a new technique, AIChE J., 42, 1772–1788, doi:10.1002/AIC.690420629 (1996).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
-
Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
-
Zhang, Z. & Pawliszyn, J.: Headspace solid-phase microextraction, Anal. Chem., 65, 1843–1852, doi:10.1021/AC00062A008 (1993).
-
Zhang, W., Huang, L., Yang, C., & Ying, W.: Experimental method for estimating Henry’s law constant of volatile organic compound, Asian J. Chem., 25, 2647–2650, doi:10.14233/AJCHEM.2013.13584 (2013).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
14) |
Value at T = 310 K. |
20) |
Calculated using machine learning matrix completion methods (MCMs). |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
24) |
Value at "room temperature". |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
73) |
Value at T = 296 K. |
81) |
Value at T = 288 K. |
186) |
Experimental value, extracted from HENRYWIN. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
243) |
Value from the training dataset. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
261) |
Value from the validation dataset. |
279) |
Data are taken from the report by Howe et al. (1987). |
280) |
Value from the training set. |
299) |
Value given here as quoted by Staudinger and Roberts (1996). |
326) |
Using the theoretical initial concentration (H0); see Zhang et al. (2013) for details. |
327) |
Average of all duplicates (H1); see Zhang et al. (2013) for details. |
328) |
Sieg et al. (2009) also provide data for supercooled water. Here, only data above 0 °C were used to calculate the temperature dependence. |
330) |
It was found that Hs changes with the concentration of the solution. |
338) |
Calculated using Gh and Hh from Table 2 in Andon et al. (1954). Note that the thermodynamic functions in that table are not based on their α in Table 1. Instead, the expression exp(−Gh/(RT)) yields the Henry's law constant Hsxp in the unit 1/atm. |
340) |
Values for salt solutions are also available from this reference. |
353) |
The regression parameters for ethylbenzene in Table 1 of Schwardt et al. (2021) are wrong. Corrected values from Schwardt et al. (2022) are used here. |
354) |
The data from Schwardt et al. (2021) were fitted to the three-parameter equation: Hscp= exp( −176.88587 +11290.74921/T +23.22869 ln(T)) mol m−3 Pa−1, with T in K. |
355) |
Different types of Henry's law constants of Ryu and Park (1999) are inconsistent, with 14 % difference. |
356) |
The data from Robbins et al. (1993) were fitted to the three-parameter equation: Hscp= exp( −371.46947 +20514.07888/T +51.95086 ln(T)) mol m−3 Pa−1, with T in K. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|